If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4=50
We move all terms to the left:
x^2+4-(50)=0
We add all the numbers together, and all the variables
x^2-46=0
a = 1; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·1·(-46)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*1}=\frac{0-2\sqrt{46}}{2} =-\frac{2\sqrt{46}}{2} =-\sqrt{46} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*1}=\frac{0+2\sqrt{46}}{2} =\frac{2\sqrt{46}}{2} =\sqrt{46} $
| 2q+10=-8q | | 48e+21-4e=41 | | -4x-9=-65 | | 4=2(4.5p+2.5) | | 4x+7-6=5 | | -11=n/(-7)-20 | | 5(x+5)÷2+1=4x | | y/(-3)-6=-9 | | 500=0.5x+125 | | (7x+8)+62=180 | | 5x-36=10x+54 | | 3(r-5)=-16+2r | | x(2x-5)-3(2x-5)=0 | | a/6+15=-21 | | -24=-4h-40 | | 500n=875 | | 4y+7=18y | | 9.9=q+20 | | 2.5p+6=–4p–8 | | w+9.1=17.64 | | 3p+7=4p | | c-2.3=1.53 | | -3(m+5)=3(m-1) | | 6-4=6x-8x+10 | | 4y+15=6y–11 | | y/18=17 | | 2(x-10=12) | | 722=19p | | |4z|=20 | | -5u=6=41 | | 2(x+2=10) | | 113=k+-428 |